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1 Introduction

Traditional data mining methodologies have focused on “flat” data i.e. a collection of

identically structured entities, assumed to be independent and identically distributed.

However, many real-world datasets are innately relational in that they consist of multi-

modal entities and multi-relational links (where each entity- or link-type is character-

ized by a different set of attributes). Link structure is an important characteristic of a

dataset and should not be ignored in modelling efforts, especially when statistical de-

pendencies exist between related entities. These dependencies can in fact significantly

improve the accuracy of inference and prediction results, if the relational structure is

appropriately leveraged (Figure 1).

The need for models that can incorporate relational structure has been accentuated

by new technological developments which allow us to easily track, store, and make ac-

cessible large amounts of data. Recently, there has been a surge of interest in statistical

models for dealing with richly interconnected, heterogeneous data, fuelled largely by

information mining of web/hypertext data, social networks, bibliographic citation data,

epidemiological data and communication networks.

Graphical models have a natural formalism for representing complex relational data

and for predicting the underlying evolving system in a dynamic framework.

1



1 INTRODUCTION 2

Figure 1: Comparison of flat (i.e. not taking into account relational structure) versus

collective classification on WebKB database: Logistic is a flat logistic regression model

and Link, Section and Link+Section are three different relational models. Figure taken

from [38]

The present survey provides an overview of probabilistic methods and techniques

that have been developed over the last few years for dealing with relational data. Par-

ticular emphasis is paid to approaches pertinent to the research areas of pattern recog-

nition, group discovery, entity/node classification, and anomaly detection. We start

with supervised learning tasks, where two basic modelling approaches are discussed –

i.e. discriminative and generative. Several discriminative techniques are reviewed and

performance results are presented. Generative methods are discussed in a separate

survey. A special section is devoted to latent variable models due to their unique char-

acteristics and usefulness in static and dynamic frameworks and in both supervised

and unsupervised learning processes.

Section 4 contains a brief discussion of unsupervised learning techniques with an

emphasis on computational efficiency and large networks. Finally, section 5 discusses

performance metrics with an emphasis on classification problems.
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2 Supervised Learning of Graphical Models

In broad terms, the methods of supervised learning in graphical models can be par-

titioned into generative and discriminative classes. Provided with sufficient training

data, the discriminative approach is expected to yield superior accuracy as compared

to its generative counterpart since no modelling power is expended on the marginal

distribution of input features. This is especially true in classification and regression in

relational structures, which do not exhaust potential inference problems. Conversely,

if the probabilistic model of the relational data is accurate, the generative approach

can perform better with less data. In general it is less prone to overfitting and allows

one to more easily specify meaningful priors on the model parameters.

In the following, we review several discriminative models for addressing problems

of probabilistic inference in general graph structures and communication networks. To

illustrate the fundamental difference between these two types of models, we follow the

approach of Minka [22]. Let y denote the attributes of the entities that we wish to

predict and x represent the observed input variables. In a generative setting, one

defines a joint model pg(x, y; θ) which depends on a set of parameters θ. These

parameters are selected so that the model pg provides a good representation of the

data. The aforementioned model could also be written as:

pg(x, y; θ) = pg(y | x; θ)pg(x; θ) (1)

Hence the maximum likelihood estimation of θ given data {xi, yi} would require op-

timizing:

Lg(θ) =
∑

i

(log pg(yi | xi; θ) + log pg(xi; θ)) (2)

On the other hand, in a discriminative setting one needs only to define a conditional

model pd(y | x; θ) where the parameters θ are now used to define the conditional

distribution and are independent of x. This can be combined with an arbitrary prior

of x, i.e. pd(x; θ′), which depends on a new set of parameters θ′ that are not necessarily
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the same as θ. Hence the joint pdf of the discriminative model can be written as:

pd(x, y; θ, θ′) = pd(y | x; θ)pd(x; θ′) (3)

and the log-likelihood for (θ, θ′):

Ld(θ, θ′) =
∑

i

(log pd(yi | xi; θ) + log pd(xi; θ
′)) (4)

As it can be readily seen by comparing Equations (2) and (4), the latter exhibits

more flexibility in interpreting the data because it does not require that θ = θ′. In

particular, in cases where we are interested only in predictions for y, that is only in

the conditional pd(y | x; θ), the second term in Equation (4) becomes irrelevant. If

however a generative model was used for the latter problem, inadvertently the accuracy

in capturing pg(y | x) would be (at least) partially compromised. This happens because

the parameters θ are determined so they provide a good interpretation of pg(x) in

addition to pg(y | x) (Equation (2)).

2.1 Discriminative Models

In this section, we review four basic approaches to discriminative modelling of re-

lational data — namely Conditional Random Fields, Relational Markov Networks,

Markov Logic Networks, and Structural Logistic Regression. Even though these tech-

niques emerged at roughly the same time, their motivations and applications are quite

different.

If x denotes the input variables that are observed and y the output variables that

we wish to infer (in a classification or regression setting), then discriminative models

are represented by an undirected graph (not necessarily acyclic). Consider for example

a citation network consisting of papers that we wish to label based on their general

topics (e.g. in a mathematical database those topics can be number theory, topology,

analysis, logic, etc). These labels represent the output variables y and the attributes of

each paper (e.g. title words, authors’ names, keywords) the input variables x (Figure
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2). In this setting, an associated Markov network factors the conditional distribution

p(y | x) as follows:

p(y | x) =
1

Z

∏
A

ΨA(yA, xA) (5)

where the factors ΨA (clique potentials) are non-negative functions of the nodes in each

clique, Z is the normalization constant, A is an index over all cliques and yA, xA the

variables associated with clique A (Figure 2). An alternative graphical representation

of this structure is provided by a factor graph, a bipartite graph in which a variable

node v (belonging to x or y) is connected to a factor node ΨA if v is an argument

in ΨA. Most often, particularly for computational implementation, it is assumed that

each factor is parameterized by an exponential form. Thus Equation (5) can be written

as:

p(y | x) =
1

Z

∏
ΨA

exp





K(A)∑

k=1

λAkfAk(yA, xA))



 (6)

The feature functions or sufficient statistics f can be binary (as in text modelling

applications) or real-valued (as in computer vision models). Roughly speaking they

specify the cliques and potentials between attributes of related entities. Consider for

example a dataset in which the entities are web-pages and the relations are hyperlinks

from one web-page to another. If y represents the labels of those web-pages and we

assume that entities with the same labels tend to be linked, then we can capture this by

introducing for each link a clique between the labels of the source and its target pages.

The potential of the clique will then have higher values for identical label assignments

to the linked pages. Similar formulations can be adopted for other relational schemas.

In contrast to generative models, the feature functions can introduce long-range

dependencies and cycles in graphical representation. This allows for added modelling

flexibility in capturing complex relational structures. Logistic regression, a well-studied

statistical model for classification, can be viewed as the simplest example of a discrim-
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Figure 2: An unrolled Markov net over linked documents. The ellipses indicate la-

bels/topics (output variables y) and the circles the attributes of each document (input

variables x). For each link, a clique is introduced between the labels of the source and

the target page. Note that documents with the same label tend to be linked to each

other. This can be captured by having higher values of the potential on each clique for

assignments that give common labels to the linked pages. Figure taken from [38].

inative Markov model.

For several practical applications (which are characterized by statistical homogene-

ity along the graph), the weights λ can be tied, i.e. we can partition the factors of the

graph into a number of clique templates Ci whose parameters are the same. In this

case, the conditional distribution can be rewritten as:

p(y | x) =
1

Z

∏
Ci

∏
Ψc∈Ci

exp





K(i)∑

k=1

λikfik(yc, xc))



 (7)

Conditional Random Fields (CRFs) represent one of the first attempts to intro-

duce discriminate models in relational settings [18]. The motivation was to address

problems related to segmenting and collectively labelling sequence data (e.g. text)

with higher accuracy compared to existing alternatives such as the generative Hidden

Markov Models (HMMs) and the discriminative maximum entropy Markov models

(MEMMs). The original framework was further developed and generalized in a series
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of papers that ensued [20, 44, 36, 5, 6, 34, 25, 35] with applications in various types of

relational structures such as entity recognition and classification in text, RNA struc-

tural alignment and protein structure prediction, labelling and segmentation of images,

object recognition in computer vision. In these papers, various versions of CRFs have

appeared with different levels of complexity and clique sizes. Linear chain CRFs are

perhaps the simplest version of CRFs for sequence modelling and can be considered the

discriminative counterpart of HMMs. If the state space is not particularly large, infer-

ence can be facilitated by employing variants of the dynamic-programming algorithms

for HMMs. Learning of the weights λ is based on finding the mode of the posterior

when Gaussian priors are used. The optimization component is usually carried out

using gradient ascent, conjugate gradients, the Broyden-Fletcher-Goldfarb-Shanno op-

timization algorithm (BFGS) or a limited memory BFGS (referred to as L-BFGS). For

general CRFs, the choice for an inference method depends on the amount of train-

ing data available for y. In problems with incomplete training data maximization of

the posterior is performed using gradient ascent or Expectation-Maximization (EM)

[35]. For inference with complete training data, approximate methods such as pseudo-

likelihood, variational approaches, or loopy belief propagation have been recommended.

An additional advantage of CRFs is that the descriptive ability of the possible feature

functions can be quantitatively assessed. In [20], a greedy optimization algorithm is

presented that performs automatic feature induction, i.e. it selects those feature func-

tions f that significantly increase the conditional likelihood if added to the model. This

allows for more compact descriptions and near-optimal use of computational resources

in learning the model.

Relational Markov Networks (RMNs), which first appeared in [38], are a type of

general CRF in which the graphical structure and parameter tying are determined

by an SQL-like syntax. They share the same underlying principles and modelling

assumptions with CRFs and relevant discriminative models. As such, the graphical

structure of RMNs is based on the relational structure of the domain and can easily
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Figure 3: Comparison of discriminative and generative models for WebKB database.

Exists+Naive Bayes is completely generative. Exists+Logistic is generative in the links

but locally discriminative in the page labels given to the local features (words, meta-

words). Link is completely discriminative. Figure taken from [38].

model complex patterns over related entities. Original applications involved collective

classification of linked web-pages with approximately 1400 nodes. RMNs achieved a

labelling error of about 10% in contrast to 20% by a simple logistic regression scheme

and by generative models (Figure 3). The problem of link prediction over 5 possible

link types, in the same database has also been considered where RMNs were found

to perform better than existing techniques. Similar success was also observed in link

prediction for social networks [41, 39].

Maximum margin Markov networks (MMMNs) represent a combination of RMNs

with Support Vector Machines [40, 37]. As a result they carry desirable features from

both formulations such as the use of kernels (which can efficiently deal with high-

dimensional feature spaces) and the ability to capture correlations in structured data.

An efficient algorithm has been proposed for learning MMMNs based on a compact

quadratic program formulation. Experiments in several problems such as handwritten

character recognition and collective hypertext classification demonstrate very signifi-
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Figure 4: Comparison of various methods on WebKB database. mSVM corresponds to

multi-class SVM, RMN to Relational Markov Networks and M3N to MMMN. Figure

taken from [40].

cant performance gains, in the order of 30% to 40% in relative accuracy, over alternative

approaches such as logistic regression, standard RMNs and SVMs (Figure 4).

Markov logic networks [28, 31] are discriminative models where the feature functions

in Equation (6) take on the form of first-order logic clauses. They have been successfully

applied to collective classification problems and comparative results have also been

produced for assessing different techniques of approximate inference. In [16], a novel

procedure for the selection of feature functions was presented that combines ideas from

inductive logic programming (ILP) and feature induction in Markov networks. The

algorithm performs a beam or shortest-first search over the space of clauses, guided by

a weighted pseudo-likelihood measure.

Finally, Structural Logistic Regression (SLR) is a discriminative model that essen-

tially extends logistic regression in relational settings [26, 27]. In comparison to the

aforementioned formulations, it is perhaps the most similar to RMNs in the sense that

the feature functions are constructed from SQL queries over the input data. The model

uses the Bayesian Information Criterion (BIC) in order to sequentially augment the

number of feature functions used. It has been successfully applied to the problem of
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Figure 5: Training and test accuracy (%) of the models learned using only one relation

type (cites) and all relation types (cites, author, published in). Performance reported

for four types of articles in the database (i.e. “artificial intelligence,” “data mining,”

“information retrieval,” and “machine learning”) and for the entire collection. Figure

taken from [26].

unobserved link prediction in the Citeseer citation database (Figure 5).

2.2 Generative Models

A detailed discussion is contained in ”Survey of Bayesian Models for Modelling of

Stochastic Temporal Processes” by Brenda Ng.

3 Latent Variable Models

In this section, we will consider probabilistic models that are defined in terms of some

latent or hidden variables. Even though they could have been discussed in the previous

sections along with discriminative and generative models, we devote a special section

due to their unique characteristics and in order to emphasize their usefulness in various

tasks relevant to the PKS project. Latent variables are hidden variables that relate

nodes in a graph by grouping. A variety of such models have appeared in the literature

in static and dynamic frameworks and in a supervised or an unsupervised learning

processes. These models can be used to perform tasks such as link prediction, discovery

of groups/clusters with similar characteristics, etc.
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Consider a transaction network for which we have some link data Yi,j. For simplicity,

we assume that Yi,j is symmetric (Yi,j = Yj,i) and binary so that there is no link between

i and j if Yi,j = 0 and a link exists if Yi,j = 1. This formulation can be readily extended

to cases where Y takes on categorical or even real values to account for the type or

volume of transactions between nodes i and j and to problems where the matrix Y is

non-symmetric which indicates that the relational structure has a directional character.

Consider also a number of covariates pertinent to these nodes, i.e. Xi,j ∈ Rk, which

can include attributes of each of the nodes or of the links between them. The goal is to

construct a model for predicting Yi,j given the covariate data. The basic assumption is

that each node is associated with a latent variable Zi which completely determines its

link properties. Hence the Yi,j are conditionally independent given Z and therefore:

P (Y | X, Z, θ) =
∏
i,j

P (Yi,j | Xi,j , Zi, Zj, θ) (8)

where θ is a set of parameters to be optimized during parameter learning.

Nowicki and Snijders [24] introduced the first such approach in social networks,

where Zi indicates a membership to an unobserved class, cluster, or group and the

probability of a link between two nodes depends only on the respective groups to

which the nodes belong. The authors assumed a fixed number of clusters and the

membership assignments were drawn from a multinomial distribution. Apart from its

significance in link prediction, this model can be useful for group discovery based on

relational data.

The same basic idea was recently explored in the terms of Infinite Relational Model

(IRM) [15] for the purpose of unsupervised partitioning of various node types into

clusters on the basis that a good set of partitions allows relationships between entities

to be predicted by their cluster assignment. The authors formulated a framework in

which such a task can be performed in the presence of multiple relationship types

linking various entity types. Since the number of clusters is initially unknown, the

authors adopt a Dirichlet Process prior i.e. a prior that allows for countably infinite
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clusters. In addition, they use a Beta prior Beta(β, β) for representing the probability

of relation between nodes that belong to any pair of classes. Inference and learning

in nonparametric Bayesian models such as the generative IRM is an area that has

attracted a lot of attention in recent years and MCMC methods generally provide the

optimal solution [23, 14].

A distinctive feature of the IRM is its ability to automatically handle arbitrary

collections of relations each of which might take on any number of arguments. More-

over, its Bayesian structure allows increasingly complex representations to be learned

as more data become available. IRMs have been applied to several applications such

as clustering synthetic data, clustering objects and features, learning ontologies and

analyzing social networks. In these cases, the model exhibited high accuracy even when

multiple types of nodes and relationships were present. Unfortunately, no information

was provided regarding the associated computational effort.

It should also be noted that this formulation was adapted in [19] as a nonparametric

prior over Bayes nets. The resulting model represents a nice compromise between

learnability and expressivity of relational knowledge. As shown in several problems,

the representation of data is superior to that in which a uniform prior is used, both

in terms of the amount of data needed to learn the correct structure and in terms of

the accuracy between the posterior distribution and the ground truth. Nevertheless,

the test problems involve only 10 to 40 variables where inferences can be performed

quickly. It is questionable how this modelling technique scales computationally to

larger problems.

For a pre-defined number of groups, an extension of the aforementioned framework

is the Group-Topic (GT) model presented in [43]. It is a generative model that incor-

porates information about attributes of the relations between various objects instead

of just the existence of the relation itself. This is achieved by conditioning the group

membership on a latent variable associated with attributes of the relation. Consider for

example an email database in which messages indicate links between people in the net-
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work. In the GT model, group formation does not exclusively depend on the existence

of the message itself but also on its attributes i.e. the words it contains. It is assumed

that each message belongs to a topic (where the total number of topics is fixed) and

group assignment depends on the topic. For example one grouping of the nodes might

arise when the topic of emails is work-related and another when the topic is related to

social-activities. In this way, group discovery is guided by emerging topics and topic

discovery is guided by emerging groups. Both modalities are adjusted so that the like-

lihood of data is increased. Inference in this model is performed by Gibbs sampling

which is facilitated by the use of conjugate priors that allow for efficient computation

of the posterior distribution. The authors present applications on sixteen years of bills

put before the US Senate (in this case, a link is defined if two senators gave the same

vote for a bill) and 43 years of similar data from the United Nations Assembly. In both

cases, the model is able to identify pertinent topics and groups of senators or nations

that voted similarly for each topic.

The GT model is essentially an extension of the model discussed in [17] which in-

corporates attributes of an entity rather than attributes of relations between entities.

In several ways, the GT model is identical to the RART (Role-Author-Recipient-Topic)

model presented in [21] which in turn represents an extension of the ART model that

appeared in the same paper. The fundamental difference is that ART does not ex-

plicitly capture the groups formed. In particular, the generative procedure adopted

therein assumes that each word is generated by selecting a recipient x (from the pool

of recipients of a message) and a topic is drawn from a multinomial that depends on

the author and the recipient x. Words are drawn from a multinomial depending on the

topic. The total number of topics and words in the vocabulary is assumed fixed. The

ART model was successfully applied in the Enron dataset where it was able to uncover

relevant pairs of author-recipient for each topic. Furthermore, the results obtained were

combined with the Jensen-Shannon divergence in order to find similarities in the roles

of people (in the network) based on the premise that nodes with similar distributions
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over their communication partners should be considered role-equivalent. Their results

compare favorably with standard social-network block structure techniques.

It should be noted that latent cluster models in generative formulations have also

been extended to dynamic settings and particularly to applications related to topic

discovery and evolution in a corpus of documents [2, 42, 45]. These formulations

however only incorporate attributes of the nodes (i.e. in the case of documents, the

words contained in a document) and their co-occurrence frequencies. That is, no

relational information is exploited in these models or their static counterparts [3, 1].

We return to the problem of link prediction and the formulation of Equation (8). As

mentioned earlier latent variables force the links Yi,j to be conditionally independent

and represent unobserved random effects in the network structure and behavior. In [13],

Hoff et al developed a model that was inspired by social networks, where Zi denotes the

coordinates of each node in an unobserved, so-called “social space”. The probability of

a link between two nodes depends exclusively on their distance d(Zi, Zj) in the social

space. These models are able to represent standard network behavior such as clustering

and transitivity, and their estimation is fairly straightforward, at least for fairly small

networks. Most commonly, the social space is assumed to be R2 (higher dimensions

are also possible but computational effort will increase accordingly) and the standard

Euclidean norm is taken as a measure of the distance. In addition, the proposed method

provides a visual and interpretable model-based spatial representation of the network

structure and relations. Learning of parameters can be done in a maximum Likelihood

setting (in fact the likelihood is concave in terms of the relative distances) or a general

Bayesian framework. Applications in several social networks (with less than 100 nodes)

have been successful in predicting missing links and uncovering social proximity. This

model was revisited in [30, 11] and extended to a dynamic setting in [29]. Therein, a

first-order Markov Gaussian model was adopted for representing the evolution of each

node’s coordinates in the social space and several approximations in the log-likelihood

were used to alleviate the computational burden. This allowed successful application



4 EFFICIENT UNSUPERVISED LEARNING 15

to networks with up to 11, 000 nodes and over 6 time steps. It was found by the authors

that the complexity of algorithm is O(n log n) where n is the number of nodes.

In the most recent version of the aforementioned model, Hoff [12] assumes a matrix

form of the latent variables Zi,j for each pair of nodes i and j and a decomposition of

the form:

Z = M + E (9)

where M represents systematic patterns and E the noise. In order to reduce di-

mensionality of the unknown parameters, a reduced-rank decomposition of M is used

instead:

M = U D V (10)

where U and V T are orthogonal n ×K matrices (where K << n) and D a diagonal

K × K matrix. In a Bayesian framework, appropriate priors on the matrices and

remaining parameters are introduced in order to fit the model. Applications have been

considered in a network with n = 130 nodes. The link structure examined was defined

by whether country i initiated a conflict with country j. Several covariates such as

populations, polity scores, geographic distance were considered. Despite its increased

expressivity, the model appears to be computationally expensive especially for large

networks, unless a good representation for the random effects matrix Z (Equation (9))

can be found in advance. Such procedures are discussed in the next section.

4 Efficient Unsupervised Learning

Several data mining applications on large graphs and communication networks have

recently appeared in the literature with particular emphasis on fast and space efficient

computational procedures that are able to deal with hundreds of thousands of nodes in a

dynamic environment. We will discuss in more detail matrix decomposition techniques

for graph structure and anomaly detection.

Consider a large graph represented as a sparse adjacency matrix A with binary (in-
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dicating the presence of absence of a link) or real-valued entries (indicating the volume

of an exchange/transaction). The typical way of summarizing and approximating such

matrices is through transformations such as SVD (Singular Value Decomposition) or

PCA (Principal Component Analysis), which are not space efficient and do not take

advantage of the sparsity of A. For that purpose, Drineas et al. [7] developed the

CUR decomposition that adopts a representation of the form:

A ≈ CUR (11)

where C ∈ Rm×c,U ∈ Rc×r and R ∈ Rr×n (c, r << m, n). An improved version of

CUR is the Compact Matrix Decomposition (CMD) presented in [33] which adopts a

similar representation as in Equation (11) but requires much less space and computation

time. The columns of the matrix C are constructed by sampling the columns of A

with weights proportional to their Euclidean norms. The central matrix U is dense

but of fairly small dimension, at least compared to the original system. It is shown

that this low-rank approximation can capture a significant portion of the activity and

identify salient communication patterns associated with rows and columns of C and R

matrices. The Frobenius norm can be used to quantify the approximation error, which

can be rapidly calculated by partially sampling the entries. This error measure can be

readily used for anomaly detection by identifying those columns (or rows) for which

the error norm between the original A and its approximation exceeds a predefined

threshold. Applications in static citation networks with approximately 500, 000 nodes

have shown that this method is successful in achieving high approximation accuracy

with reduced memory usage and CPU time. The CMD procedure has also been adapted

to time-transient problems where a sudden change in approximation accuracy suggests

structural changes of communication patterns.

The same principle has been exploited in [32] in order to detect such patterns in

more complex networks, consisting of various node types that require a higher-order

tensorial description of their communication structure. The proposed technique is
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essentially a PCA-type decomposition that is performed over the various modes of the

tensor. The authors present ways to perform this process for dynamic data by having

time as an additional mode in the tensor (Dynamic Tensor Analysis or DTA for short).

They also present a fast approximation to DTA, called the Streaming Tensor Analysis,

which performs the updates based on the error’s magnitude. Several tests on temporal

data of 100, 000 dimensions and several thousand time steps have shown the merits of

this approach in anomaly detection and pattern discovery, which is achieved with a

relatively small computational burden and memory requirements.

5 Performance Metrics

In cases where the goal is to learn a probability distribution, say f̂(y) and the the test

data are known to follow a known distribution say f(y), then the Kullback-Leibler

divergence D(f ||f̂) can be readily used to evaluate a model’s accuracy:

D(f ||f̂) = −
∫

f(y) log
f(y)

f̂(y)
dy (12)

The latter quantity is always non-negative and becomes zero only when f ≡ f̂ .

Normalized (with respect to the entropy of f) or symmetrized versions of the above

expression will also be suitable. In general however, the underlying distribution is not

known as the collected data is not generated from an artificial model. In these cases,

the performance metrics are problem dependent.

For classification tasks, algorithms are usually evaluated with respect to some test-

data (i.e. labelled data) based on which a confusion matrix can be constructed. For the

simplest case of binary labelling (i.e. 0 or 1), a confusion matrix contains the number

of instances that belong to each of the cases seen in Figure 6.

A measure of accuracy is given by the ratio of correct predictions over the total

number of predictions or equivalently by its complement– a.k.a. the error rate. Accu-

racy can be estimated for various threshold levels by constructing respective confusion
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Predicted 1 Predicted 0

True 1 true positive (hits) false negative (misses)

True 0 false positive (false alarms) true negative (correct rejections)

Figure 6: Confusion Matrix

matrices. The optimal threshold is naturally the one that maximizes accuracy. Good

values for accuracy depend on the problem at hand and hence accuracy is not a gen-

erally applicable metric. Consider for example a test dataset in which 90% and 10%

of the data are labelled with 1 and 0 respectively and a classification algorithm that

always predicts 1. Then the accuracy value would be 90% but that does not necessarily

imply a good labelling scheme. Accuracy however is the only measure from the ones

discussed that generalizes to multiple classes.

A more sophisticated metric is the precision-recall curve, initially used in docu-

ment retrieval applications. This is a x-y diagram where the horizontal axis contains

the recall rate i.e. the ratio of true positives (hits) over the total number of true 1

(hits + misses) and the vertical axis depicts the precision rate i.e. the ratio of true

positives (hits) over the total number of positives (hits + false alarms). The curve

is constructed by calculating the precision-recall pair for various thresholds of the

classification scheme. Scalar indicators commonly derived from the curve are called

Fβ-values. F1-value is simply the harmonic average of the recall and precision rates

i.e. F = 2 recall × precision
recall + precision

. The break-even point is the value for which recall equals

precision.

Finally, a metric that is becoming more popular in machine learning problems and

has better statistical foundations than most others is the Receiver Operator Char-

acteristic plot or ROC curve (which is closely related to the precision-recall curve).

Originally developed in the 1950’s as a by-product of research into making sense of

radio signals contaminated by noise, ROC curve is also an x-y diagram where the ver-

tical axis contains the recall rate (also called sensitivity) and the horizontal axis the
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complement of specificity i.e. the ratio of false positives (false alarms) over the total

number of True 0 ( false alarms + correct rejections). Hence, sensitivity expresses the

probability that the model will predict 1 when the true value is 1 and 1− specificity

expresses the probability that it predicts 1 when in reality it is 0. The best possible

prediction method would yield a point in the upper left corner of the ROC space i.e.

100% sensitivity and 100% specificity. A completely random predictor (i.e. one in

which the prediction can be represented by the flipping of a coin independently of the

values of the predictor variables x) would lie on the x = y line. Because most classi-

fiers output a classification metric, e.g., a posterior probability on the two classes, one

can generate a ROC by varying the decision threshold on this classification metric and

computing the sensitivity and specificity for each decision threshold. For example, a

decision threshold of 0.5 means that test samples with posterior probabilities greater

or equal to 0.5 will be classified as positive samples. Greater decision thresholds will

result in fewer true positives and false positives, while smaller decision thresholds lead

to more true positives and false positives. ROC curves always start from (0, 0) and

end at (1, 1) (Figure 7). Their most attractive property is that they are insensitive to

changes in class distribution. If the proportion of positive to negative instances changes

in a test set, the ROC curve will not change. The furthest away from the x = y line,

the better the performance of the classification algorithm. This can also be expressed

by the Area Under the Curve (AUC value) which measures the average true positive

rate of a classifier over the entire range of false positive rates. It is equivalent to the

probability that the classifier will rank a randomly chosen positive example higher than

a randomly chosen negative example. In general, classification models with AUC > 0.9

are considered excellent [4, 10]. If two ROC curves do not intersect then the method

corresponding to the curve above is better.

A recent alternative to the ROC curve is the so-called cost curve which first ap-

peared in [9] and was further developed in [8]. By associating a certain cost to each

misclassification entry in the confusion matrix, the expected cost of the classifier can
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be explicitly represented. Performance (expected cost normalized to be between 0 and

1) is plotted on the y−axis. Operating points, meaning combinations of misclassifica-

tion costs and class distributions, are plotted on the x−axis after being normalized to

be between 0 and 1 by combining the parameters defining an operating point in the

following way:

PCF (1) =
p(1)C(0 | 1)

p(1)C(0 | 1) + p(0)C(1 | 0)
(13)

where C(0|1) is the cost of misclassifying a example of class 1 as class 0, C(1|0) is the

cost of misclassifying a class 0 example as class 1, p(1) is the probability of a class

1 example, and p(0) = 1 − p(1). The motivation for this PCF definition, and cost

curves more generally, originates in the simple situation when misclassification costs

are equal. In this case, PCF (1) = p(1) and the y-axis becomes error rate, so the cost

curve plots how error rate varies as a function of the prevalence of class 1 examples.

The PCF definition generalizes this idea to the case when when misclassification costs

are not equal. The PCF formula is intimately tied to the definition of the slope of a

line in ROC space, which plays a key role in ROC analysis. The x-axis of cost space is

a slope in ROC space normalized to be between 0 and 1. There is a point/line duality

between ROC space and cost space, meaning that a point in ROC space is represented

by a line in cost space, and a line in ROC space is represented by a point in cost space.

A classifier represented by the point (FP, TP ) in ROC space is a line in cost space

that has y = FP when x = 0 and y = 1− TP when x = 1. The set of points defining

an ROC curve become a set of lines in cost space. For example, the ROC curve in

Figure 7 consists of eight points (including (0,0) and (1,1)). Each point becomes a line

in cost space, i.e. the eight dotted lines in Figure 8. Corresponding to the convex hull

of the points in ROC space is the lower envelope of the lines in cost space, indicated

by the solid line in Figure 8. This expected cost representation, maintains many of the

advantages of ROC representation, but is easier to understand. It allows the analyst

to immediately see the range of costs and class frequencies where a particular classifier

is best and quantify its superiority over other classifiers.



5 PERFORMANCE METRICS 21

Figure 7: ROC curve: False Positive Rate = 1 - Specificity and True Positive Rate =

Sensitivity. Figure taken from [8].

Figure 8: Cost curve corresponding to ROC curve in Figure 7. Each of the 8 points in

the ROC curve become lines in the cost space. Figure taken from [8].
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6 Conclusions

In this survey, we presented an overview of recently developed methodologies for deal-

ing with relational data with particular emphasis to communication and transaction

networks. We discussed two basic graphical models, namely discriminative and gen-

erative. The former models are particularly suited to classification or labelling tasks

as they have the ability to learn distributions accurately based on a large number of

features. They do not however provide information about the structural properties of

the system and generally require larger amounts of data for training in comparison

to generative models. Special attention was given to latent variable models as they

are particularly applicable to capturing group formations and predicting links between

nodes in a network. It should be noted that the majority of the literature is devoted

to static graphs and extensions to dynamic problems are generally hampered by the

increased computational effort. We have also discussed some recently developed meth-

ods which are applicable to very large graphs and are able to discover patterns and

detect anomalies with relatively small computational requirements. Finally, we pre-

sented various performance metrics that have appeared in the literature with emphasis

on classification problems.
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